Geometry, Topology and Destiny by Mark Trodden

April 11, 2012

I’ve reached the cosmology part of my General Relativity (GR) course, and one of the early points that comes up is my traditional rant against confusing three very distinct concepts when thinking about the universe. Roughly stated, these are; What is the shape of the universe? Is the universe finite or infinite? and Will the universe expand forever or recollapse.

When we apply GR to cosmology, we make use of the simplifying assumptions, backed up by observations, that there exists a definition of time such that at a fixed value of time, the universe is spatially homogeneous (looks the same wherever the observer is) and isotropic (looks the same in all directions around a point). We then specialize to the most general metric compatible with these assumptions, and write down the resulting Einstein equations with appropriate sources (regular matter, dark matter, radiation, a cosmological constant, etc.). The solutions to these equations are the famous Friedmann, Robertson-Walker spacetimes, describing the expansion (or contraction) of the universe.

It is important to take a moment to emphasize what we have done here. GR is indeed a beautiful geometric theory describing curved spacetime. But practically, we are solving differential equations, subject to (in this case) the condition that the universe look the way it does today. Differential equations describe the local behavior of a system and so, in GR, they describe the local geometry in the neighborhood of a spacetime point.

Excerpt of an article written by Mark Trodden at DISCOVER. Continue HERE

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s