Researchers today unveiled a DNA nanorobot that can track down leukemia cells and kill them on sight, unleashing a therapeutic payload that causes the cancerous cells to self-destruct. Incredibly, this molecular assassin can accomplish this assignment while leaving healthy cells unharmed.
Leading researchers in the field of nanotechnology are calling the clam-like bots (which are assembled from the same components that make up your genetic code) a major milestone in the field of smart drugs. This level of praise has been hard-earned, and a long time coming; it’s taken the field of DNA nanotechnology thirty years to get where it is today. Find out how scientists got here, and how DNA nanotechnology — once considered by many to be a pipe dream — is now poised to change the future of medicine and technology forever.
What is DNA Nanotechnology?
Nanotechnologies are materials, structures, or devices intentionally designed by scientists to function on a scale of less than 100 nanometers. As a point of reference, a water molecule is about 1 nanometer across, while a single strand of hair has a diameter of about 100,000 nanometers. Researchers use a variety of molecules to create nanotechnologies (carbon nanotubes, for example, are popular in nanotech); but DNA nanotechnologists work with — you guessed it — DNA.
Continue at io9
Reblogged this on msamba.